If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2+35=47k
We move all terms to the left:
8k^2+35-(47k)=0
a = 8; b = -47; c = +35;
Δ = b2-4ac
Δ = -472-4·8·35
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-47)-33}{2*8}=\frac{14}{16} =7/8 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-47)+33}{2*8}=\frac{80}{16} =5 $
| x+x+18=-1/3 | | 7s+27=76 | | 1.5b+5=20-b32 b+5=20−b | | n=8n3n+6 | | 3x-9/2=39/2 | | -2x+4=4x+7 | | 7x-x-10=-14 | | -2/2w+5=4 | | 2(u-75)=42 | | 6z+34=12z-91+34 | | -5=4x-29 | | 128+6x=86 | | 4-2x/5+3=9 | | A+7=-14+2a | | -14=7v+7 | | 12+3x=-30 | | 8x–40=20x–4 | | 7x-3=7x=5 | | 7x+8=5x+25 | | 91=12w-56+w+53 | | 3=2u+21 | | 8u=3u+3u | | q/4=11(q÷4) | | -2x+35=20-x | | 90=-6r | | V+98=3v+15+52 | | 3-7c=4c+2 | | 4y+120=180 | | x+2/3x+40=180 | | y+30=3y-6 | | 10m-20=20+14m | | 2x–13=-3x+2 |